
ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1589 JCPS Volume 9 Issue 3

Integration of feedback control loop with proportional share schedulers to

fine tune the QOS of real-time application
V.L.Jyothi1, S.Chockalingam2

1Department of Computer Science & Engineering, Jeppiaar Engineering College, Chennai, Tamilnadu, India

2Software Engineer, CISCO Systems Pvt. Ltd, Chennai.

*Corresponding author: E-Mail: jyothivl15@yahoo.com

ABSTRACT

Proportional share scheduling works based on predefined shares of applications. It faces the challenge of

setting reasonable share for a set of tasks with dynamically changing resource requirements. Hence, it is not widely

accepted for general purpose systems. We propose a mechanism to set the CPU share (weight) based on the progress

metrics of an application. The weight allocates the required processor cycles. As the workload characteristics change,

the proportion needs to be recomputed and reallocated to the tasks. Hence, we include a feedback mechanism to meet

current resource needs of any application. The PS scheduler is restructured to integrate with the feedback mechanism.

The environment for the feedback scheduler is identified to achieve high throughput and to minimize service time

error. The performance of feedback scheduler is evaluated and its related metrics are analyzed. We tested the

performance with a mix of workload which includes real time and non real time tasks.

KEY WORDS: Proportional Share Schedulers, Real-Time Scheduling, Feedback Control Loop, Feedback

Schedulers, Dynamic Resource Allocation.

1. INTRODUCTION

Proportional share resource allocation is particularly well suited to the problem of providing real time

services because its underlying scheduling mechanism is a quantum based round robin like scheduler. Much of this

work is rooted in an idealized scheduling abstraction called generalized processor sharing(GPS) (Parekh A. and R.

Gallager 1993). Under GPS, scheduling tasks are assigned weights, and each task is allocated a share of th resource

in proportion to its weight. Thus, each task’s designated share is guaranteed (fairness) and any misbehaving task is

prevented from consuming more than its share. Recently, many algorithms such as SFQ (Bennett and Zhang, 1996),

SFS (Abhishek Chandra 2000), SMART (Nieh, 2003), DFS (Micah Adler 2004) are proposed based on the concept

of generalized processor sharing (GPS).

GPS based algorithms are extensively used for real time systems. It is not widely accepted for general

purpose systems. The reason is difficulty in estimating the correct weight assignment. In this paper, we have

described a technique to dynamically estimate the proportion of processor capacity required for an application.

We employ a feedback mechanism to a proportional scheduler to estimate the required proportion by an application.

However, many of today’s applications have time-varying resource demands. This means that the resource must be

dynamically allocated. The idea of dynamically allocating the resource based on the progress is proposed by (Steere,

1999).

Recently, there has been a lot of interest in feedback control theory and it has been successfully applied to

several computer system projects. At the network layer, Hollot, (Hollot, 2001) applied control theory to analyze the

RED congestion control algorithm on IP routers. The idea of using feedback information to adjust the schedule has

been used in general-purpose operating systems in the form of multi-level feedback queue scheduling (Blevins,

1976). The system monitors each task to see if it consumes a time slice or does I/O and adjusts its priority accordingly.

This type of control seems to work via ad hoc methods. No systematic study has been done so far. In the area of CPU

scheduling, Steere, (Steere, 1999) developed a feedback based CPU scheduler. It synchronizes the progress of

consumers and producer process of buffers. Recently real-time application has become a focus area of feedback

control because the unpredictability of the workload.

Related Work: The related work (real time systems with feedback control) falls into three types: Integrated

control and real time system design, flexible and adaptive real time system algorithms and architectures and QoS

approaches in real time systems.

Cervin (2002), have considered sampling period selection for a set of control tasks. The performance of a

task is given as a function of its sampling frequency, and an optimization problem is solved to find a set optimal task

periods. Co-design of real time control systems is considered by Liu, J, (Liu, 2003), wherein the multiple tasks are

expressed as functions of time for real-time embedded software. Shin and Meissner (Shin, Meissner 1999) deal with

on-line rescaling and relocation of control tasks in a multi-processor system. The elastic model of Buttazzo, (Buttazzo

(2000) allows run time task timing adjustment in order to improve schedulability and thereby enhance the control

performance. However, its task timing constraints do not incorporate information in terms of control performance.

Another approach proposed by Pau Marti, (2002) forwards the idea of flexible timing constraints for a set of control

tasks.

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1590 JCPS Volume 9 Issue 3

The second area relates to the wealth of flexible scheduling algorithms available. Buttazzo, (Buttazzo.G

2000) proposes an elastic task model for periodic tasks. Stankovic, (Stankovic, 1999) present a scheduling algorithm,

the FC-EDF, that explicitly uses feedback in combination with EDF scheduling. The same approach is extended

using an additional proportional integral derivative (PID) by Lu, (Lu, Stankovic 2002). The optimization of a control

system’s performance subject to schedulability has been treated by Rehbinder, (Rehbinder, 2000), Seto, (Seto, 1996).

The third area of related work is on QoS aware real-time software. In order to maximize the performance,

the resource allocation is adjusted online. Feedback control theory has been applied to solve performance or QoS

problems in computing systems Hellerstein, (Hollot, 2001), Abdelzaher, (Abdelzaher, 2000), Miguel D (Miguel de,

2002) analyzes QoS-Aware Component Frameworks. Proportional share schedulers offer weaker guarantees for

applications with time constraints than the traditional real time based schedulers. However, they tend to be more

flexible and ensure a graceful degradation in overload situations (Nieh, 2003). A high level architecture with

feedback control loop to allocate the appropriate cpu share as required by the application is proposed (Jyothi, 2007)

Thus, the literature survey differentiates the work pertaining to real time systems with feedback control into

three types. Our approach is to apply the feedback control to fine tune the QoS or performance of a real time

application.

2. METHODS AND MATERIALS

Feedback Scheduling Framework: The goal of the feedback scheduler is to maximize CPU utilization,

throughput, minimize deadline miss ratio and service time error. The goal is achieved by maintaining the execution

rate at a desired level by manipulating the CPU share. The basic scheduler used is proportional share scheduler. The

scheduler with the feedback control loop is termed as feedback scheduler. The feedback scheduler estimates the

correct proportion of the weight from the execution rate of a task.

To apply feedback control techniques in scheduling, schedulers must be restructured based on the feedback

control framework. Feedback scheduling uses feedback control loop to schedule the task. The CPU share required

by the task is estimated and manipulated by the feedback control loop. The CPU share is manipulated in order to

maintain the execution rate at the desired level.

To apply feedback control to a scheduling system, the components corresponding to Figure 1 have to be

decided. The controlled variable and set point of the system must be selected. The requirements of real-time

scheduling algorithm are to achieve i) high CPU utilization ii) high system throughput iii) low miss ratio and iv) low

service time error. To satisfy these requirements, our feedback scheduler chooses execution rate of a task as the set

point. We control the progress of execution rate to the set point so as to maximize the CPU utilization and minimize

the deadline miss ratio.

Feedback Control Scheduling Architecture: Feedback control CPU scheduling consists of: a task model, a

set of control related variables, a feedback control loop that maps a feedback control system structure to real-time

CPU scheduling, and a basic scheduler. Figure 1 shows the architecture of a feedback scheduler.

Figure.1.Architecture of a feedback scheduler

Task Model: Our workload model consists of real time and non-real time applications. These applications

have very diverse characteristics. Real time applications have some well-defined computation that must be completed

before an associate deadline. The goal of real time applications is to complete their computations before their

respective deadlines. If it is not possible to me,l deadlines, it is generally better to complete as many computations

as possible by their respective deadlines. In contrast, non-real-time applications have no explicit deadlines.

• Each task is assigned a unique id

• The period of a task is the deadline of a task for real time task.

• The weight or the CPU share is estimated by the feedback controller. As the process executes, the weight is

dynamically changed.

• The target rate is expressed in terms of execution rate. For a real time task, it is the number of frames

processed per second. For a non real time task, it is the number of lines processed per second.

• The sampling interval is defined for invoking the feedback control loop. The feedback control loop is tested

for various sampling intervals of different durations.

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1591 JCPS Volume 9 Issue 3

Control Related Variables: To apply feedback control techniques in scheduling, schedulers need to be restructured

based on the feedback control framework. The function of the feedback control loop depends on the controlled

variable and manipulated variable. The choice of the controlled variable depends on the system goal. The goal of our

system (feedback scheduler) is to maintain a high CPU utilization. The execution rate of an application can be used

to determine CPU utilization. By controlling the execution rate of an application the goals of the system can be met.

Hence, we define the execution rate as the controlled variable. The target rate in terms of execution rate is defined

as the set point.

The execution rate of a task highly depends on the CPU share or its weight. By controlling the execution

rate of a task to the desired execution rate, the task receives its appropriate CPU share. In other words, CPU shares

are manipulated so as to control the progress execution rate to the set point. Hence, CPU share is used as the

manipulated variable.

To facilitate the design of feedback scheduler, variables related to our objectives are determined. The list of

variables is depicted in Table 1.

Table.1.Control related variables

Set point Target execution rate

Controlled variable Progress execution rate

Manipulated variable CPU share

Feedback Control Loop: The main objective of our feedback control loop is to minimize the deviation of progress

execution rate from the target execution rate. The minimum deviation improves the performance of a task. Feedback

control loop comprises of a monitor and an adapter. It is activated at every sampling interval. To apply feedback

control techniques in scheduling, schedulers need to be restructured based on the feedback control framework.

Function of Feedback Control Loop: Each feedback control loop is composed of a monitor, and a

controller/adapter. The monitor and adapter are a part of feedback control loop and they are executed whenever the

feedback control loop is called.

• The monitor measures progress metrics from the application and feeds the samples back to the adapter.

• The adapter adjusts each application’s proportion automatically based on the progress measure. It tunes the

scheduler to allocate the CPU cycles required for an application.

The feedback control loop is responsible for the dynamic CPU allocation for the real-time and non-real-time

threads. The dynamic CPU allocation is expressed in terms of weight. The scheduler allocates the desired CPU cycles

to a thread in proportion to its weight. The weight for a particular thread is calculated by te monitor and it is adjusted

by the adapter.

Monitor: The monitor in the feedback control loop is responsible for estimating the proportion of CPU required by

an application. Our feedback control loop assigns the fraction of CPU to an application based on the rate of execution.

We characterize the execution rate as target execution rate and progress execution rate.

The processor percentage consumed by an application over a period of time is defined as progress execution

rate. The target execution rate is fixed for every application. As the application executes with mix of workload, its

progress rate of execution may vary. The workload corresponds to real time and non-real time applications.

Figure 2 shows the block diagram of a monitor in the feedback control loop. The monitor includes a progress

rate calculator which measures the rate of progress execution of an application. The progress execution rate is then

fed into an adapter which compares it with the target rate. The target execution rate is directly applied to the adapter

in the feedback control loop.

Figure.2. Block Diagram of monitor

The progress rate of an application is sampled every 100 ms. It is measured as the amount of progress (∆p)

made in a particular interval. The progress rate calculator, during each sampling interval calculates the amount of

progress made in a particular interval and computes the average progress rate. The average progress rate is measured

as the sum of the progress rate made at various intervals.

 Progress rate calculator employs simple moving average to calculate the progress in the rate of execution

made by an application.

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1592 JCPS Volume 9 Issue 3

 The simple moving average is an equally weighted sum of the previous k data points. We represent the

amount of progress made in a particular interval as ∆p. The weight at each data point equals 1/k.

 ∆p(t)=1/k *(∆p(t) + ∆p(t-1) + . . . + ∆p(t-k-1)) (2)

         1/ * 1 . . . 1p t k p t p t p t k          

Where, ∆p(t)=amount of progress at tth interval and K=number of data points or observations.

 The amount of progress made by a thread is measured as the average sum of the amount of progress made

at the previous intervals. The ideal target execution rate is determined for all the applications. Ideally, this target rate

represents the expected progress rate.

 The ideal target rates for various multimedia applications are tabulated as follows. The test sequences are

taken for motion pictures experts group (MPEG) files are shown in Table 3.

Test Sequence - 1, ideal target rate 25 frames/sec.

Table.3.Test Sequences

Number of frames 150

horizontal_size 352

vertical_size 288

Bit rate 1152000.0(bits/s)

Monitor employs a progress rate calculator to measure the average progress execution rate. The target

execution rate represents ideal progress rate. The ideal target execution rate for an application can be obtained from

a test sequences. The target execution rate can be set by the user depending on the preferred execution rate for an

application. Thus, monitor in the feedback control loop computes the progress measure of an application based on

its execution rate.

Adapter: The adapter adjusts each application’s proportion of processor capacity based on the progress measure.

The progress measure includes the progress execution rate and target execution rate. The main function of the adapter

in the feedback control loop is to compute the difference between the progress execution rate and target execution

rate. The difference is termed as error. The error determines the rate of execution of an application. That is, the error

will decide that whether the application is progressing towards the ideal target rate. The larger the deviation of

progress rate from the target rate results in slower performance of an application. Lesser deviation improves the

performance of an application.

 The error which is computed based on the progress measure of an application is then mapped into CPU

share. Hence, CPU share is assigned based on the progress measure of an application. It then tunes the scheduler to

allocate the CPU cycles required for an application. It maps the progress measure of the execution rate to the change

in the CPU share so as to drive the execution rate back to the set point.

 The error is determined from the target and the progress of the execution rate of an application.

error(e) = Target rate – Progress rate

error(ei) = ∆r - ∆Pi(t) (3)

Parameters

 The target rate of a thread.

 The time period is denoted as t.

 The amount of progress made by an individual thread is represented by ∆pi.

 Adapter manipulates the CPU share according to the measured error. The adapter employs a Proportional

Integral (PI) controller to measure the error. The error e(n) measured in a particular interval (n) and the sum of the

recent errors are added. The error is calculated for all threads at different intervals. The rate at which error change

can be measured using a PI controller. PI controller tracks the error at recent interval and also at the previous intervals.

 The PI controller algorithm corrects the proportional term and the integral term. The proportional

value determines the reaction to the current error and the integral value determines the reaction based on the sum of

recent errors. The weighted sum of these two actions is used to adjust the scheduler. The sum of these two terms

constitutes the manipulated variable. The manipulated variable used by our control loop is the CPU share.

Hence,

 MV(t) = Pout + Iout (4)

where, Poutand Iout, are the contributions to the output from the PID controller. MV(t) is the manipulated variable.

The proportional term is given by:

 Pout = KP . e(n) (5)

Where, Pout is Proportional term of output, KP is Proportional constant, e is Error = target rate – progress rate

and n is nth sampling interval (the present)

The integral term is given by :

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1593 JCPS Volume 9 Issue 3

 Iout = KI . ∫ ei (6)

where Iout is Integral term of output, KI is Integral constant.

Measurement of Error by PI Controller: The feedback control loop is invoked at every sampling interval. Adapter

which is in the feedback control loop computes the error at all intervals. The error e(n) measured at a particular

interval (n) and the sum of the recent errors are added to get the error of a thread at a particular interval.

So, ∆wi(t) = Kp ei (t) + KI 


t

1j

i)j(e (7)

where ∆wi(t) is error of a task i at tth interval, Kp ei (t) is proportional error and KI 


t

1j

i)j(e is integral error. The

value for Kp is set according Ziegler-Nichols method and proportional constant Kp is taken as 0.9. The value for KI is

set according Ziegler-Nichols method and integral constant KI is taken as 0.1.

The error computed by PI controller at (t+1)th interval is :

 ∆wi(t+1) = Kp ei (t+1) + KI 


t

1j

i)j(e

(8)

The computation of error may vary at each interval. Hence, the change in error is given for taski at tth interval is

computed as the difference between the error at tth interval and (t-1)th interval. It is given by:

 ∆wi(t) = (Kp+Ki) *ei(t) - Kp *ei(t-1) (9)

Where ∆wi is error of task i at tth interval, Kp is proportional constant, Ki is integral constant, ei(t) is error

of task i at tth interval and ei(t-1) is error of task i at (t-1)th interval.

 During any interval, there may be a set of tasks for which error needs to be computed. The error for an

individual task is computed using the above mentioned equation. That is, the error computed for each task is as follows:

 ∆w1(t) = (Kp+Ki) *e1(t) - Kp *e1(t-1)

∆w2(t) = (Kp+Ki) *e2(t) - Kp *e2(t-1)

……………………………………

……………………………………

……………………………………

∆wm(t) = (Kp+Ki) *em(t) - Kp *em(t-1)

Hence, the computation of error for a set of threads taken at a particular time is given by:

∆w(t) = K1 E(n) - K2 E(n+1) (10)

Where, E is the error for a set of threads in a particular time.

E = e1+ e2 + e3 + …+ em ; K1 = (Kp+Ki) and K2 = Kp ; e1+ e2 + e3 + …+ em = error for a set of threads in a particular

interval.
 As the workload characteristics change, the error computed for each task changes. The change in the error

is reflected in the CPU share. The error measured by a PI controller is directly mapped into CPU share which is

represented by w. This direct mapping is possible because error is computed based on the progress measure of an

application. The CPU share represents the amount of CPU cycles that a task should receive. Our feedback mechanism

assigns the CPU cycles for a task based on its progress measure. Hence, the error computed by the adapter can be

directly mapped into CPU share.

Manipulation of CPU Share Using an Adapter: Adapter manipulates the CPU share according to the measured

error. The error e(n) measured at a particular interval (n) and the sum of the recent errors are added to get the error

of a thread at a particular interval. The error is measured for all the tasks at various intervals.

 The error measured at tth interval is different from the error that is measured in (t+1)th interval. The error

difference between the two intervals is defined by the equation 8. The CPU share is manipulated according to the

change in error.

 The CPU share (weight) of a task at tth interval includes the weight at the previous interval and the error. The

error is measured by the PI controller. Thus, the CPU share (weight) calculated at tth interval includes the CPU share

(weight) at (t-1)th interval and the controller output. Every time, the CPU share or weight of a task is adjusted using

the manipulated variable. Here, ‘w’ is the manipulated variable.

The new weight assignment at tth interval for any task i becomes

 wi(t) = wi(t-1) + ∆wi(t) (11)

Where, ∆wi(t) is PI controller output, wi(t-1) is CPU share or weight of task i at previous interval, wi(t) is CPU

share or weight of task i at current interval.

 The measured error represents the rate of execution of an application. The error can either be positive or

negative. The positive error indicates that the progress of an application is below the target rate. That is, the progress

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1594 JCPS Volume 9 Issue 3

execution rate of an application is less than the target rate. The negative error indicates that the progress execution

rate of an application is higher than the target rate.

 The term CPU share or weight is used to define a portion of the CPU resources that is allocated to a task.

Our feedback mechanism allocates the CPU resources based on the execution rate of a task. The execution rate is

measured and compared with the target execution rate. The difference is computed as error. The CPU share is

manipulated according to the measured error.

 If the measured error is positive, then the manipulated CPU share gets incremented.

 If the measured error is negative, then the manipulated CPU share is decremented.

 If the error is zero, the progress rate has reached the ideal target rate and there is no change in the CPU share.

 The deviation of progress execution rate from the target rate determines the performance of an application.

If the performance is slow, our feedback mechanism increases its CPU share so as to meet the target rate with minimal

variability. If the performance is fast, our feedback mechanism decreases its CPU share.

 The manipulated weight has to be adjusted to the total weight of the tasks that exists during a particular

interval. The total weight corresponds to the total number of CPU shares of all tasks in a particular time interval. The

weight adjustment of a task i with respect to the sum of the weight of other tasks is termed as relative weight and it

is given by:

 (12)

Implementation of PS Scheduler with Feedback Mechanism: We integrate the feedback mechanism with the

proportional share schedulers and its characteristics are studied. We implement the feedback mechanism to assign

weight to the tasks and also to adjust the weight dynamically. The weight assignment is based on the execution rate

of an application.

Figure.5. Implementation of feedback scheduler

Figure 5 shows the block diagram of a feedback scheduler. Monitor and adapter constitute the feedback

control loop. Monitor measures the execution rate of a task. As the task executes, the execution rate is measured

periodically. Each time, the measurement is filtered by means of a filter in the feedback control loop. The progress

measure measured by the monitor is then fed into an adapter. The adapter computes the error difference between the

target rate and the progress execution rate. A PI controller is employed in order to compute the error over a time

interval. The measured error (∆w) is fed into a weight manipulator. The weight manipulator computes the current

weight and the relative weight (∆w1). The current weight of a task depends on the previous weight and on the

measured error. The weight is always manipulated with respect to the weight of other tasks which exists at that

particular time.

The scheduler employed is basically a proportional share scheduler. We have employed the scheduling

mechanism of WFQ, SFQ, and SFS. The three PS schedulers use virtual time domain to make scheduling decisions.

 v(t) =
 jw

1

 (13)

where Σwj is the sum of the shares of all active tasks.

Based on the tuned weight from the adapter, the scheduler computes the virtual time. It increases at a rate inversely

proportional to the sum of the weights of all active processes. The scheduler is responsible for allocating the processor

cycles based on the tuned weight (CPU share). Each task is allocated CPU time based on its CPU-shares value

divided by the sum of the CPU-shares values for all active tasks. The characteristics of these schedulers are studied

and they are compared with the characteristics of open loop schedulers.

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1595 JCPS Volume 9 Issue 3

3. RESULTS AND DISCUSSION

Service Time Error:

 fi(t) =


j

i

w

w
 (14)

 The task’s share of a given CPU will change over time as the load changes. As the total weight of processes

in the system increases, each task’s share of the resources decreases. As the total weight of processes in the system

decreases, each task’s share of the resources increases. When a task’s share varies over time, the service time that a

task should receive during any interval is given by

 Si(t1,t2)= ∫fi (t) (15)

 When the CPU is allocated in time quanta, it is not possible for a task to always receive exactly the service

time it is entitled to in all time intervals. The difference between the service time that a task should receive at a time

t, and the service time it actually receives is called the service time error.

Service time error (SE) is determined as:

 SEi (t1,t2) = Si(t1,t2) – wi(t1,t2) (16)

Where, i represents a task, SEi(t1,t2) is service time error measured during the interval t1,t2, wi(t1,t2) is CPU

share (weight) assigned during t1,t2 and Si(t1,t2) is ideal service time that a task should receive during t1, t2.

 Fairness can be measured in terms of service time error. When the shares are predefined, the service time

that a task receives during one interval will not be the same during another interval. When the system is overloaded,

there will be a large variation in the service time of a task between various intervals. Hence, the service time error

deviates considerably during later intervals. The predefined shares become critical when the system is overloaded.

 Our proposed feedback mechanism integrated with PS schedulers assigns weight based on the execution rate

of an application. This type of weight assignment can work well even in overload conditions. When the workload

characteristics change, there will be a change in CPU share of a task. The service time that a task receives is highly

dependent on the CPU share. As CPU shares are decided by the progress execution rate, there will not be much

difference in the service time of a task between any two intervals. Hence, the service time error deviates less during

later intervals. We compute the CPU share during an interval and let it be stored as xi*. The actual allocation which

is measured as the service time at a particular interval be assigned as xi. Then, for ‘n’ number of tasks, service time

error is calculated as:

 (17)

 Where, n is the number of tasks, xi*is the ideal allocation, and xi is the actual allocation.

 We measure the service time error for all three PS schedulers with and without feedback mechanism. Figure

6 through 8 illustrate that PS scheduler with feedback mechanism results in minimum service time error which

improves CPU allocation. As the CPU shares are manipulated based on the progress execution rate, the variation in

the CPU allocation is minimum at all intervals. In case of pre-defined CPU share allocation, the CPU allocation

varies linearly during all intervals.

Figure.6. Service time error with WFQ feedback

scheduler

Figure.7. Service time error with SFQ feedback

scheduler

Figure.8.Service time error with SFS feedback scheduler

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1596 JCPS Volume 9 Issue 3

Throughput: Throughput is defined as the number of processes completed per unit time. We measure the number

of processes completed by repeating the experiment ten times. All iterations are made to run for different durations.

We measure throughput for two different job categories: i) real time applications ii) mix of real time and non real

time applications.

 Figure 9 illustrates throughput for different job categories when scheduled using WFQ with feedback

mechanism. We observe that the policy can result in high throughput when the workload is purely real time. When

there is a mix of workload, the throughput is not high. The experiment is carried out for different number of iterations.

Figure.9. Throughput for different categories of tasks

4. CONCLUSIONS

 A feedback mechanism is integrated with the proportional share schedulers and its characteristics are studied.

We implement the feedback mechanism to assign weight to the tasks and also to adjust the weight dynamically. The

weight assignment is based on the execution rate of an application.

 The feedback scheduler is structured and the related environmental variables is identified to achieve high

throughput and to minimize service time error. The performance of feedback scheduler is evaluated and its related

metrics are analyzed.

 Our feedback mechanism integrated with PS schedulers assigns weights based on the execution rate of an

application. We evaluated the performance for a mix of workload which includes real-time and non-real time tasks.

The dynamic change in the workload characteristics is also considered.

REFERENCES

Abdelzaher T.F and C Lu, Modeling and Performance Control of Internet Servers’, 39th IEEE Conference on

Decision and Control, Sydney, Australia, 2000, 2234-2239.

Abhishek Chandra, Micah Adler, Pawan Goyal, and Prashant Shenoy, Surplus fair scheduling, A Proportional-Share

CPU scheduling algorithm for symmetric multiprocessors, OSDI, 2000, 45–58.

Bennett J and H.Zhang, WF²Q: Worst-case Fair Weighted Fair Queueing', Proceedings of INFOCOM ’96, San

Francisco, CA, 1996, 120-128.

Buttazzo G and Abeni L, Adaptive rate control through elastic scheduling, Proceedings of 39th IEEE conference on

Decision and Control, 2000, 4883-4888.

Cervin A, Eker J, Bernhardsson B and Arzen K.E “Feedback feedforward scheduling of control tasks.” Real-Time

Systems, 2002.

Goyal P, Guo X and Vin H.M, A Hierarchical CPU Scheduler for Multimedia Operating Systems, Proceedings of

the second symposium on Operating Systems Design and Implementation, Seattle, WA, 1996,107-122.

Hellerstein J, Diao Y, Parekh S, Tilbury D, Feedback Control of Computing Systems, Wiley-Interscience, 2004.

Hollot C.V, Misra V, Towsley D, Wei-bo Gong, A Control Theoretic Analysis of RED’,Proceedings of IEEE

infocom, 2001, 1510—1519.

Jyothi V.L and Srivatsa S.K, A Mechanism for Dynamic Weight Assignment by Inferring Processing Requirement

of an application', International Journal on Information Sciences and Computing, 1, 2007, 67–70.

Liu J and Lee E, Timed multitasking for real-time embedded software.” IEEE Control Systems Magazine, 23(1),

2003.

Lu C, Stankovic J, Son S and Tao G, Feedback Control Real-Time Scheduling: Framework, Modeling, and

Algorithms,’ Real-Time Systems, pp 23(1), 2002, 85–126.

Micah Adler and Petra Berenbrink, A Proportionate Fair Scheduling Rule with Good Worst-Case Performance',

proceedings of the 15th annual ACM Portal on Parallel Algorithm & Architectures, 2004, 101-108.

Miguel de M.A, QoS-Aware Component Frameworks, in The 10th International Workshop on Quality of Service

(IWQoS 2002), (Miami Beach, Florida), 2002.

ISSN: 0974-2115
www.jchps.com Journal of Chemical and Pharmaceutical Sciences

July - September 2016 1597 JCPS Volume 9 Issue 3

Nieh J and Lam S, ‘A Smart Scheduler for Multimedia Applications’, Proceedings of ACM Transactions on

Computer Systems, 21(2), 2003, 117-163.

Parekh A and Gallager R, A Generalized Processor Sharing Approach to Flow Control in Integrated Services

Networks, The Single-Node Case', IEEE/ACM Transactions on Networking, 1(3), 1993, 344-357.

Pau Marti, Josep M, Gerhard F, Krithi R, Improving Quality-of-Control Using Flexible Timing Constraints: Metric

and Scheduling Issues, Proceedings of the 23rd IEEE Real-Time Systems Symposium, 2002, 91.

Rehbinder H and Sanfridson M, Integration of Off-Line Scheduling and Optimal Control’, 12th Euromicro

Conference on Real-Time Systems, 2000, 137-143.

Seto D, Lehoczky J.P, Sha L and Shin D.G, On Task Schedulability in Real-Time Control Systems’, Proceedings

17th IEEE Real-Time Systems Symposium, 1996, 13.

Shin K, Meissner C, Adaptation of control system performance by task reallocation and period modification’,

Proceedings of the 11th Euromicro Conference on Real-Time Systems, UK, 1999, 29-36.

Stankovic C, Lu J, Abdelzaher T, Tao G, Son and Marley M, The case for feedback control real-time scheduling,

Proceedings of the 11th Euromicro Conference on Real-Time Systems, UK, 1999, 11-20.

Steere D, Goel A, Gruenberg J, McNamee D, Pu C and Walpole J, A Feedback-Driven Proportional Allocator for

Real-Rate Scheduling, Proceedings of the 3rd Symposium on Operating Systems Design and Implementation, 1999,

145-158.

